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ABSTRACT

A general theory for indicial potential compressible

aerodynamics around complex configurations is presented.

The motion is assumed to consist of constant subsonic

or supersonic speed for CtO (steady state) and of small

perturbations around the steady state for >0. Using

the finite-element method to discretize the space problem

one obtains a set of differential-difference equations in

time relating the potential to its normal derivative on

the surface of the body. The aerodynamics transfer function

is then obtained by using standard method of operational

calculus.
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INTRODUCTION

Considered in this note is the problem of unsteady

subsonic and supersonic potential aerodynamics for an

aircraft having arbitrary shape. The motion of the

aircraft is assumed to consist of small perturbations

with respect to the constant speed motion. The objective

of this paper is to describe the time functional relation-

ship between aerodynamic potential and its normal derivative

(normal-wash,-=39 , ,) in a form which can be easily used

for the flight-dynamics analysis in both time and frequency-

domain. The finite element method is used for space-

discretization.

The analysis presented here is based upon a new
1,2

integral formulation, derived by the author, which

includes completely arbitrary motion. However, the

numerical implementation (Refs. 3 and 4) is limited to

steady and oscillatory flows. On the other hand, in order

to perform a linear-system analysis of the aircraft it

is convenient to use more general aerodynamic formulations

i.e. fully transient response for time-domain analysis,

and the aerodynamic transfer function (Laplace's transform

of the fully unsteady operator) for frequency-domain

analysis (see for instance Ref. 5). Consistently with

this type of analysis the unsteady contribution is assumed
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to start at time t=O, so that for time t50 the flow

is in steady state. Furthermore the motion of the

aircraft is assumed to consist of small (infinitesimal)

perturbation around the steady state motion. Since the

initial work by Wagner6 on unsteady incompressible two-

dimensional flow, several problems have been considered.

Detailed analysis of the various methods available are

given for instance in Refs. 5 and 7. Finite wings can be

solved only for particular planform (such as elliptical

wings) for subsonic flows, and for general planform in

supersonic flows. Strip theory is used for slender wings

in subsonic flow.

For subsonic and supersonic flows around arbitrary

complex configurations no tool has been available for

either time- or frequency-domain analysis. Such a tool

is presented in this note, for both time and frequency

domain. For the sake of brevity, only the relationship

potential-downwash is outlined since the full transfer

function (generalized force per unit generalized coordinate)

can be easily obtained by including the relation downwash-

generalized coordinate (boundary conditions on the body)

and the relation between potential and generalized forces.
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SUBSONIC INDICIAL AERODYNAMICS

Consider the subsonic case first. Within the

small perturbation assumption, the motion of the surface

of the aircraft with respect to a frame of reference

traveling at uniform subsonic speed with respect to the

undisturbed air can be assumed to be negligible. Thus

the Green theorem for the equation of the aerodynamic

potential is given by2

where . is a surface surrounding the body and the wake,

1 c /)N is the normal derivative (normal-wash) ol

on , N is the normal to the surface Z

3 1 (2)

and

R x-x + (Z - z (3)

while

T,= T(4)
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where

S(>-x) + 'R (5)

is the time necessary for a disturbance to propagate

from P to P,. Furthermore

- 422 (61
In Eq. 1 the surface Z is assumed to be fixed with respect

to the frame of reference. However, the effect of the

motion of the surface is retained in the boundary condition,

which gives the normal-wash approximately as

a N M+ OT ?---x- (7)

(where $(T)=0 is the equation of the surface Z ).

This approximation is consistent with the hypothesis of small

perturbation which has been invoked also in writing Eq. (1).

Also consistent with the hypothesis of small perturbation

with respect to the constant-speed motion, is the assumption

that the surface of the wake is the one of the steady-state

case,

It may be noted that, because of the linearity of the

problem, the state-steady contribution can be subtracted

from Eq. (1). Therefore in the following it is understood

that + and k are the unsteady parts of the potential and

the downwash, which (in line with the concepts of operational

calculus) are assumed to be identically equal to zero

for T O:
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4 o (T o) (8)

In order to understand the nature of the aerodynamic

operator, Eq. (1), it is convenient to isolate the

contribution of the wake. This yields

4nE(P) C4(?,, T' - # 8

where z is the (closed) surface of the body, while

is the (open) surface of the wake, and Zi is the

potential-discontinuity across of the wake, evaluated

in the direction of the normal (i.e.i -. if the

upper normal is used). It should be noted that the value

of Li is not an additional unknown, since it can be

easily shown from the Bernoulli theorem that (see

Appendix B)

a-(p, T1 (10)

where T is the nondimensional time necessary for the

vortex-point to travel (within the steady flow) from

the point, PTE (origin of the vortex-line at the trailing

edge), to the point P.

If small perturbation hypothesis can be used for the

steady state flow, then 71 can be approximated by

TV- p(xx (11)
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Equations (9) and (10) fully describe the problem of

linearized unsteady subsonic potential aerodynamics

around complex configurations. In order to solve this

problem, it is necessary to obtain a numerical approximation

for Eq. (9). This can be obtained by using for instance

the finite-element method. While other methods can be

used, the finite element one appears to be at present

time the only method sufficiently general and flexible to

be used here. Consider the integrals on FB first.

Using a typical finite-element representation, it is

possible to write
Lo

(, T-O) (T-q) M() C12

where -- is the total number of nodes on the body,

i(T- q) and CL(T-0L) are time dependent values of A'

and 4~ at the node, L, at the time T-® (where 4 is

the disturbance-propagation time from P, to PL );

furthermore ML(P) and N (P) are prescribed global
L

shape-functions, obtained by standard assembly of the

element shape-function (see for instance Ref. 8).

For instance for the hyperboloidal element of Ref. 4 the

element shape functions are

T) (13)
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where = and t - ± define the locations of the

corner, A , of the element, E.

Next consider the integrals on the wake. In order

to facilitate the use of Eq. (10), it is convenient to

divide the wake into strips defined by (steady-state)

vortex-lines emanating from the nodes on the trailing

edge. The strips are then divided into quadrilateral

elements. The potential discontinuity can then be

expressed as
No

(L, 6- (5 ( (14)

where N is the number of nodes on the wake,A,~&T- is the

value of Ab at the N-th node on the wake at time

T- S (where QN is the propagation time from P to P )N*

and LN(P) is the global shape function relative to the

N-th node of the wake. Note that according to Eq. (l)

aq5 (-) .rt
N (TI6 (T t! (15)

where M=M(N) identifies the trailing-edge node which is

on the same vortex-line as the node N. Furthermore iq

is the time necessary for the vortex-point to be convected

from the trailing-edge node M to the wake-node N. It

may be worth noting that - , where

Lu and L, identify the upper and lower trailing-edge nodes

on the body corresponding to the M node on the
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trailing edge. Therefore it is possible to write

(1t 'L) L (16)

where -i - , if L identifies the upper

(lower) node of the body corresponding to the N-th node

of the wake,nJ 0 i otherwise.

Combining Eqs. (9, 12, and 14) one obtains

2 E (P,), 45. -, 7-)- _ B . ,

L L LL (T

Z F- G P( ) +

N (17)

where,

L = - M(P) 4
-2 L

L, 271

F I L2 R

(18)

d 2
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and according to Eqs. (15) and (16)

L N (19)

Next consider, in particular, that P, coincides with

the node J of the body. In this case E= 1/2 and, using

Eq. (19), Eq. (17) reduces to

rJ LL JL
T L (20)

where

Cli, D, FL, 11 21

Equation (20) indicates the nature of the aerodynamic

operator relating potential and normal-wash as obtained

by using finite-element representation to discretize

the spacial problem. The operator is a linear differ-

ential-difference operator to which the methods of

operational calculus can be applied. However before

considering the Laplace's transform of Eq. (20) it is

convenient to make some remarks about the contribution

of the wake. It may be noted that, according to Eq. (8),
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is identically equal to zero for T O therefore

according to Eq. (15)

N O ( (22)

Hence if the analysis is limited to T T max the

contribution of the elements with 1 N> T is identicallyN -max
equal to zero. Therefore the wake can be truncated to

eliminate these elements. It may be noted that those

elements would contribute to the transfer function and

thus to the transform of ! but not to the final solution

in the time domain for T T max . The advantage is not

only that less computational time is used Isince less

elements are required) but also that the problem of con-

vergence connected with the infinite wake (factors e

with Real(s) <0 and -o ) are bypassed.*

Next by taking the Laplace transform of Eq. (20)

and solving for one obtains

NJL) (23)

* A correct analysis implies the evaluation of the

limit of the present analysis as the number of elements

on the wake goes to infinity.



-11-

where

AI LJ -(CiJ + Sl D

J -PJ / 1 (24)

Equation (22) indicates that the matrix [AJ.] is the

desired subsonic matrix transfer function relating the

transformed vector of the potential . ? to the trans-

formed vector of the normal-wash i
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SUPERSONIC INDICIAL AERODYNAMICS

In this section the formulation for the supersonic

case is briefly outlined. For simplicity only supersonic

trailing edges are consideres so that the contribution

of the wake can be ignored.* Under small perturbation

assumption the Green theorem for potential supersonic

flow is given by

4nE(P. 6 T - R

- (25)

where T' = e ( . is the conormal derivative4)
atC

is the conormal-wash,

(with B = n -I ) and

S)-_(- "Y (27)

while

> Y, Y,) + - 2  (28)

and

(29)

with

P M (X - )(R (30)

* If the trailing edge is not fully supersonic then
the contribution of the wake can be treated similarly
to the subsonic case, with the only difference that the
device of truncating the wake at finite distance is not
necessary in the supersonic case, since only a finite
portion of the wake can have an effect on the aircraft.
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Using Eq. (12) and following the same procedure used

for the subsonic case one obtains the supersonic indicial

aerodynamic operator

~)2 EL) L

LL c1T-o G +(31)

D' r , (T- (D + (T- -

where

'B4 .2 71 tn 4P)

(32)

L 27

In particul.ar if P coincides with the node J, Eq. (31)

reduces to
j .:i, [- (T- { (. T- ®,:)

+ z21 .T F.. 43(- 00 +J

SL " ' (33)

L JL LtJLLO/
where

S( "(34)

Finally, taking the Laplace transform of Eq. (33) one

obtains

rZ ~ MLri ", (35)
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where

~L (36)

1
Equation (35) indicates that the matrix is the

L 3i J.

desired supersonic matrix transfer function relating

the transformed vector of the potential b to the

transformed vector of the conormal-wash y? , for

supersonic trailing edge configurations. If the trailing

.edge is not fully supersonic, the formulation may be

modified following the same ideas used for the subsonic

case. It may be worth noting that according to Eq. (29)

e + e (37)

21 7 [ x7 '1ir
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CONCLUDING REMARKS

A general theory for unsteady compressible potential

aerodynamics has been presented. The motion is assumed

to consist of small perturbation starting at time t=O)

around a steady-state constant-velocity motion. In this

case the relationship between the velocity potential

and the normal-wash is given by an integral operator in

space and a differential-difference operator in time.

iUsing the finite element method to solve for the spacial

problem one is left with a differential-difference equation

in-time. This can be solved numerically for time-domain

or by using the Laplace transform and thus obtaining the

matrix transfer function for frequency-domain analysis.

The results presented here represent a considerable

improvement with respect to the formulation available

thus far since complex configurations could be analyzed

only for steady and oscillatory flows (see, for instance,

Refs. 3 and 4) while unsteady flows could be analyzed only

for simple configurations such as zero-thickness wing with

special planforms. With the method presented here unsteady

flows around complex configurations can be analyzed for

most cases of practical interest. For, the linear equations

of flight dynamics implies small perturbations around a

steady state motion, usually constant speed horizontal

flight. The unsteady aerodynamic analysis presented here
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does not require any additional limitation and therefore

is the most general formulation within the above framework.

In addition it should be noted that the increase

in generality of the formulation is obtained at no

additional increase in computational complexity. For,

if simply oscillatory problems are considered the only

advantage is to replace ' with In (Ref. 3 and 4),

with no particular computational saving.

Another advantage of the present approach is that

the dependence of the.matrix AJM upon the complex frequency,

s, is given in a very simple explicity analytic form.

This is a considerable computational advantage since once

the coefficients BL, C L, D L, FN , GN, SNL, and j have

been evaluated (and these are necessary even for the

evaluation of the potential at one single reduced frequency),

it is a trivial matter (essentially the inversion of one

matrix) to obtain the results at different values of s.

Also advantage can be taken of the analytic dependence

upon s to obtain approximate expressions for the matrix

I Ai]. For instance, at low frequencies a Taylor series

expansion for Eq. (24) can be taken to yield
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r klCL1 - iF 1[ ®, +,"

( 38)

where

[F 47 9 1 [8 [ (39)
It is essential to note the difference between the

method presented here and the classical approach for

unsteady (oscillatory) aerodynamics. In this case the

solution is assumed to be oscillatory (i.e. of the type
rnT 4

e ) and then the problem is solved in space. Here the

problem is solved first in space and then in time. This

inversion of the time and space solutions might appear to

be irrelevant, but is not. For, in the classical formula-

tion the convergence of the space solution is analyzed on

the time-transformed unknown which is highly oscillating

in space. On the other hand, here the finite-element

method is applied to the untransformed equation, where

the unknown is smooth and therefore
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fewer elements are required for convergence. The transform

applies to the discrete system and therefore high frequency

components do not involve a change in the number of elements.

This question is analyzed more in detail in Appendix A,

where the Laplace transform is used first and then the

transformed equation is solved by finite elements. This

process yields Eq. (A.3) which should be compared to Eq.

(20). Note that the integrals in Eq. (A.4) are not frequency

independent and therefore a large number of elements is

required for convergence. On the other hand the integrals

in Ec. (18) are frequency independent and the convergence

must be evaluated on the time-domain solution.

Another advantage of the present approach is the

already mentioned possibility of truncating the wake at

finite distance if the analysis is limited to TSTmax*

(since 0$ o for T<T max < ). This eliminates the

problem of convergence as the length of the wake goes

to infinity.

Other questions which have not been discussed here

are the Kutta condition and the role of the diaphragms

in supersonic flow. These points are analyzed in Refs.

3 and 4 for a zeroth-order finite-element solution (i.e.

potential, 4 , and normal-wash, , constant within each

element). Further investigations for higher-order

solutions are now under way.
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In conclusion a new approach for small-perturbation

unsteady aerodynamics has been presented. Taking full

advantage of the finite element method and the operational

calculus the problem is simplified considerably and the

relationship potential-normalwash is reduced to a system

of algebraic equation, with explicit dependence of the

coefficients upon the complex frequency, s
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APPENDIX A

In this Appendix it is shown how interchanging

the order of the time and space solution, a different

type of equation is obtained. Taking the Laplace

transform of Eq. (9) one obtains

r~l -tjt C 5
_ -

'-4-

4l4c

ZB

-

Z e dK Ci d

_,i4@ se ' , a .dZ,

N

Next using the finite-element method, i.e. setting

~~p.5 L N,~€ ):2 A,. ,(P
NLA2

a¢ .,' d= ,>z L4()A.
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yields, at P = PL'

L I

7 L. 1 L, ' + [

A.3

where

IL(P) e -

N( Pj NJ P) _

L eN Q s

-s , "J2 ]?: pA.4

S Ll L -?

Finally, according to Eqs. (15) and (16) one obtains

{ S I N. A.e

Combining Eqs. (A.3) and(A.5) aiindolving for 4di

yields a new expression for the matrix transfer function

--,I [L LJ e-n" esr -s

A.6
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Comparison with Eq. (24) indicates clearly the advantage

of using the space-discretization before the time-trans-

formation.
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APPENDIX B

In this Appendix Eq. (10) is derived. Consider

the Bernoulli theorem for potential flow

bti - + -

Dt 2 ;i B.1)

Since no pressure difference can exist across the wake, then

i / (B.2)

or

0

(B.3)

This can be reinrritten as

91 ,(B.4)
or

) ( IB.5).

where

(B.6)

is the total time derivative obtained by following

a particle having the average velocity.
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Equation (B.5) implies that the wake vortices are

simply convected, that is that

S (B.8)

where A is the time necessary for a point of the wake

to move from a point PTE of the trailing edge to the

point P. If the unsteady flow is infinitesimal .1 can

be evaluated from the steady state solution. If small

perturbation apply to steady state flow as well, n is

given by the distance '-xTE divided by the velocity,

(B.9)

Using nondimensional variables (Eq. 2), Eqs. (B.8) and

CB.9) are replaced by Eqs. (10) and (11) respectively.
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